Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Precision check on [pentation.gp] SOLVED
#8
Code:
? init(exp(Pi()/2));loop;genpent
   base          4.81047738096535165547304
   fixed point   0.E-145 + 1.00000000000000000000000*I
   Pseudo Period 3.69464335841375533580710 + 1.06216001044294092389502*I
generating superf taylor series; inverse Schroder equation, scnt 361
generating isuperf taylor series; Schroder equation, scnt 361
sexp(-0.5)= 0.44149388556590800271258410632775
1=loopcnt  6.734438825 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414683320304119199073161516641704293457800006586290888270406592
2=loopcnt  16.14879308 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682630880826737650093490296176463777662860412226388888800474
3=loopcnt  24.03560113 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626543550892577935620363027361724384104152456844251132995
4=loopcnt  32.04840534 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534634768199249898188360294331037280968748020127519588
5=loopcnt  40.38278448 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596146811726186051271337321983516231997071615402916
6=loopcnt  48.80427930 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596079045772784636752654658548653394290591963824627
7=loopcnt  57.30135824 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078746214147072484385025198343669362617159556147
8=loopcnt  65.83172331 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745561240878470035479673141387946649519338734
9=loopcnt  73.82815204 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556870620231393941232039016898103310735241
10=loopcnt  81.91862008 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861590530560306188724303721881960943663
11=loopcnt  90.09474083 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541674585781220374176541575975256630
12=loopcnt  98.32748089 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578659514474143180100763842212618
13=loopcnt  106.6292769 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578179603766836663909037659999642
14=loopcnt  114.9625455 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578178760347939093471360666938970
15=loopcnt  123.3730561 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578178754814000844681999624069557
16=loopcnt  131.4033281 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578178754801786292553376291713396
17=loopcnt  139.5050918 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578178754801717399690722642964464
18=loopcnt  147.6454299 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578178754801717245455070461469587
19=loopcnt  155.8374822 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244680794029640458
20=loopcnt  164.0688306 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679136515673714
21=loopcnt  172.3506366 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679134861786060
22=loopcnt  182.0804715 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679134851850198
23=loopcnt  190.4876162 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679134851843918
24=loopcnt  198.7628907 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679134851843818
25=loopcnt  207.2180495 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679134851843818
26=loopcnt  215.6331171 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679134851843818
27=loopcnt  223.9743246 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679134851843818
28=loopcnt  232.3153383 Riemann/sexp binary precision bits
sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679134851843818
29=loopcnt  239.6076665 Riemann/sexp binary precision bits

pentation base        4.81047738096535165547304
pentation(-0.5)       0.460975347014689190545301
sexp fixed point      -1.94648466297646768934135
sexp slope at fixed   11.8300204422121443717564
pentation period      2.54314035015181068719998*I
pentation singularity -2.58922659360979627202546 + 1.27157017507590534359999*I
pentation precision, via sexp(pent(-0.5))-pent(0.5)
                      -6.42327456356856623983420 E-45

Excellent!! =)

I used \p 144 and that took less than three minutes!
Reply


Messages In This Thread
RE: Precision check on [pentation.gp] fails? - by Cherrina_Pixie - 07/02/2011, 01:39 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Attempt to find a limit point but each step needs doubling the precision... Gottfried 15 32,869 11/09/2014, 10:25 PM
Last Post: tommy1729
  Expansion of base-e pentation andydude 13 38,586 07/02/2011, 01:40 AM
Last Post: Cherrina_Pixie
  How to force precision in SAGE? jaydfox 2 7,795 08/18/2007, 11:08 PM
Last Post: jaydfox



Users browsing this thread: 1 Guest(s)