07/13/2011, 03:17 AM

Hi.

Consider the limit of tetration as from the right, along the real axis (Here, we use the Kneser/etc. tetrational). The tetrational looks to converge to the parabolic attracting regular iteration at base . This suggests that the resulting fractional iterates of converge to the attracting parabolic regular iterates of base when . But what about ? Does it converge to the iterates obtained from the "cheta" function ?

Consider the limit of tetration as from the right, along the real axis (Here, we use the Kneser/etc. tetrational). The tetrational looks to converge to the parabolic attracting regular iteration at base . This suggests that the resulting fractional iterates of converge to the attracting parabolic regular iterates of base when . But what about ? Does it converge to the iterates obtained from the "cheta" function ?