Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Generalized Wiener Ikehara for exp[1/2](n) instead of n ?
#1
Is there a Generalized Wiener Ikehara theorem for exp[1/2](n) instead of n ?

While considering Dirichlet series I wonder what would happen if we take a(0) + a(1)/exp[1/2](1)^s + a(2)/exp[1/2](2)^s + ... + a(n)/exp[1/2](n)^s instead of a(0) + a(1)/1^s + a(2)/2^s + ... a(n)/n^s.

Since exp^[1/2](n) grows faster than any polynomial P(n) we cannot apply the normal Wiener Ikehara theorem in most cases.

Im hoping to 'bridge' analytic number theory and tetration in this way ...

regards

tommy1729
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
  Some "Theorem" on the generalized superfunction Leo.W 21 462 05/11/2021, 08:41 PM
Last Post: MphLee
  Generalized Kneser superfunction trick (the iterated limit definition) MphLee 21 2,672 03/29/2021, 02:54 AM
Last Post: JmsNxn
  Generalized phi(s,a,b,c) tommy1729 6 806 02/08/2021, 12:30 AM
Last Post: JmsNxn
  Where is the proof of a generalized integral for integer heights? Chenjesu 2 3,285 03/03/2019, 08:55 AM
Last Post: Chenjesu
  holomorphic binary operators over naturals; generalized hyper operators JmsNxn 15 24,926 08/22/2016, 12:19 AM
Last Post: JmsNxn
  Generalized arithmetic operator hixidom 16 21,650 06/11/2014, 05:10 PM
Last Post: hixidom
  Generalized Bieberbach conjectures ? tommy1729 0 2,650 08/12/2013, 08:11 PM
Last Post: tommy1729
  Generalized recursive operators Whiteknox 39 57,802 04/04/2011, 11:52 PM
Last Post: Stan



Users browsing this thread: 1 Guest(s)