Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
A kind of slog ? C + SUM f_n(x) ln^[n](x) ?
#1
I was thinking about C + f_1(x) ln(x) + f_2(x) ln^[2](x) + f_3(x) In^[3](x) + ...

This should make a kind of slog. Or the similar : abel function for 2sinh(x).
Similar question for C + f_1(x) arc2sinh(x) + f_2(x) arc2sinh^[2](x) + ...

Regards

tommy1729
Reply
#2
For instance f_n(x) could be a gauss-like erf function with tops at sexp(n).

regards

tommy1729
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
Question E^^.5 and Slog(e,.5) Catullus 7 528 07/22/2022, 02:20 AM
Last Post: MphLee
Question Slog(Exponential Factorial(x)) Catullus 19 1,739 07/13/2022, 02:38 AM
Last Post: Catullus
Question Slog(x^^^2) Catullus 1 239 07/10/2022, 04:40 AM
Last Post: JmsNxn
Question Slog(e4) Catullus 0 272 06/16/2022, 03:27 AM
Last Post: Catullus
  [MSE] Help on a special kind of functional equation. MphLee 4 1,881 06/14/2021, 09:52 PM
Last Post: JmsNxn
  A support for Andy's (P.Walker's) slog-matrix-method Gottfried 4 6,027 03/08/2021, 07:13 PM
Last Post: JmsNxn
  Some slog stuff tommy1729 15 27,298 05/14/2015, 09:25 PM
Last Post: tommy1729
  A limit exercise with Ei and slog. tommy1729 0 3,834 09/09/2014, 08:00 PM
Last Post: tommy1729
  A system of functional equations for slog(x) ? tommy1729 3 9,105 07/28/2014, 09:16 PM
Last Post: tommy1729
  slog(superfactorial(x)) = ? tommy1729 3 9,152 06/02/2014, 11:29 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)