Thread Rating:
  • 1 Vote(s) - 5 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Could be tetration if this integral converges
(05/03/2014, 06:12 PM)JmsNxn Wrote: And on your point about uniqueness. I was being very brief but giving an over view of how we may be able to qualify uniqueness. In technical terms, "it's the only function that in the inverse mellin transform produces an entire function f that is Weyl differintegrable on the right half plane "

So you mean "the inverse Mellin transform of the tetrational", right? Or do you mean of the reciprocal? Also, what do you mean by "Weyl differintegrable"? According to here:

that is something that only functions with a Fourier series, i.e. periodic, can have. Tetration is not periodic (although it does have a pair of "pseudo periods").

(05/03/2014, 06:12 PM)JmsNxn Wrote: However after seeing what you just posted I have to draw the same conclusion as you. has no hope of converging in a mellin transform. Which is what I pretty much figured. BUT! we're not out of the woods yet.

IF we can find some entire function such that for :

we are back in the game

OR IF we can find some entire function such that for for and

we are back in the game.

By back in the game I mean I think I can provide an analytic expression for tetration. I'm just finishing the paper I'm working on at the moment and it contains a fair amount of what I'm talking about a lot more rigorously. I'll attach it once I know it's in it's final form. It shows what I am talking about more c learly when I am using fractional calculus on recursion.

Hmm. Given the nasty, chaotic behavior of tetration I've mentioned, it would seem the second kind of function would be more difficult than the first.

Actually, I think it might be possible to get a function of the first type (for the series). If we could find an entire function such that when , then we should be in luck, for then your sum will just be and your integral . Such a function need not be a tetration extension, for it need not satisfy the functional equation for tetration, merely interpolate the values at the natural numbers.

However, it seems you can get a different for every , indeed, I believe, with judicious choice of the , you can make anything you want, indeed, any function which decays to 0 and is analytic. So it would seem that any tetration extension constructed with this method would be highly non-unique, unless I'm missing something. Does the final tetration result not depend on the choice of ?

According to this:

there is a method to construct an entire interpolant of any increasing sequence, which would include . So this should provide (many!) suitable candidates that will reduce your integral to the function.

Messages In This Thread
RE: Could be tetration if this integral converges - by mike3 - 05/04/2014, 02:18 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Where is the proof of a generalized integral for integer heights? Chenjesu 2 4,396 03/03/2019, 08:55 AM
Last Post: Chenjesu
  [integral] How to integrate a fourier series ? tommy1729 1 4,910 05/04/2014, 03:19 PM
Last Post: tommy1729
  Some integral transforms related to tetration JmsNxn 0 3,346 05/02/2013, 07:54 PM
Last Post: JmsNxn
  (draft) integral idea tommy1729 0 3,939 06/25/2011, 10:17 PM
Last Post: tommy1729
  Cauchy integral also for b< e^(1/e)? bo198214 14 23,512 04/24/2009, 05:29 PM
Last Post: bo198214

Users browsing this thread: 1 Guest(s)