Thread Rating:
  • 1 Vote(s) - 5 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Could be tetration if this integral converges
(05/11/2014, 04:26 PM)tommy1729 Wrote: I totally agree. Although I added a minus sign to it, which I assume was a typo.

So lets think about .

Since the Taylor coefficients of decay EXTREMELY FAST , I consider this as a function that is well approximated by a polynomial for a long time.
( many remainder theorems for Taylor series imply this )

This means the main behaviour of this is like where n increases slowly with x.

This implies that is not bounded by a polynomial and also that = 0 infinitely often.

Therefore the integral diverges.

Even if we consider taking the limit of x going to +oo as the limit of the sequence x_i with = 0.



yes yes, I'm quite aware it diverges. That's only another trick we need to come up with to handle that. I have a few but I need to look deeper into the laplace transform.

Messages In This Thread
RE: Could be tetration if this integral converges - by JmsNxn - 05/11/2014, 04:30 PM

Possibly Related Threads…
Thread Author Replies Views Last Post
  Where is the proof of a generalized integral for integer heights? Chenjesu 2 5,084 03/03/2019, 08:55 AM
Last Post: Chenjesu
  [integral] How to integrate a fourier series ? tommy1729 1 5,351 05/04/2014, 03:19 PM
Last Post: tommy1729
  Some integral transforms related to tetration JmsNxn 0 3,611 05/02/2013, 07:54 PM
Last Post: JmsNxn
  (draft) integral idea tommy1729 0 4,294 06/25/2011, 10:17 PM
Last Post: tommy1729
  Cauchy integral also for b< e^(1/e)? bo198214 14 25,496 04/24/2009, 05:29 PM
Last Post: bo198214

Users browsing this thread: 1 Guest(s)