Thread Rating:
  • 2 Vote(s) - 4 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Searching for an asymptotic to exp[0.5]
#73
A conjecture for x >> 2 and functions with decreasing positive derivatives.

let some f(x) have dominant term a_n x^n
let f(f(x)) have dominant term b_m x^m.

conjecture A :
If |f(x)| < exp^[1/3](x)
then f(f(x)) ~ a_n (a_n x^n)^n = b_m x^m

thus b_m = a_n ^ (n+1) and m = n^2.

conjecture B :

(reverse of A)

If |f(f(x))| < exp^[2/3](x)
then b_m = a_n ^ (n+1) and n = sqrt(m)+o(1).

conjecture C :

If |f(f(x))| < exp^[2/3](x)
then b_m = a_n ^ (n+1) and n = sqrt(m)+o(1).
and if a_n = b_m^{1/(n+1)} does not converge fast enough , then f(x) is not entire and there is a complex z with |z|<1 such that its nearest singularity is of type a_0 + a_1 x + ...

I havent considered it alot , it might need modification or perhaps even very false.

But I wanted to share it now.

regards

tommy1729

Reply


Messages In This Thread
RE: Searching for an asymptotic to exp[0.5] - by tommy1729 - 08/03/2014, 12:10 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Merged fixpoints of 2 iterates ? Asymptotic ? [2019] tommy1729 1 575 09/10/2019, 11:28 AM
Last Post: sheldonison
  Another asymptotic development, similar to 2sinh method JmsNxn 0 2,555 07/05/2011, 06:34 PM
Last Post: JmsNxn



Users browsing this thread: 1 Guest(s)