Searching for an asymptotic to exp[0.5]
#90
(09/09/2014, 04:33 AM)sheldonison Wrote:
(09/08/2014, 11:03 AM)tommy1729 Wrote: I looked at sheldon's 2nd answer and noticed what partially was the motivation for one of my last questions :

the plot of fake ln(x) resembles integral (1 - exp(-x) ) / x !

It was "Visually Obvious" from the psuedoperiodicity and the growth rate for Re(z) << 0.

I havent considered the signs of the derivatives of integral (1 - exp(-x) / x yet.
Maybe that explains alot.

regards

tommy1729
...
So far, I have only answered the Op's question, and generated the "fake" function for \( \ln(z+1) \approx \exp(-z)\text{fakelnx}(\exp(z)\ln(z+1))
\) but doing so for \( \ln(x) \) would presumably be straightforward enough

Hey Tommy,
Actually, its much more elegant to generate the fake function for ln(x) (than ln(x+1)), and, as you correctly guessed, it is exactly the same as the integral of (1 - exp(-x) ) / x solution! Of course, I can't prove it (yet), but numerically, its exact to the limit that I can generate the fake function Taylor series. The "fakelnx" solution equation simplifies for ln(x) to:

\( a_n =\lim_{r\to\infty} \int_{-\pi}^{\pi} \frac{1}{2\pi}e^{-n(r+ix)}\exp(e^{r+ix})(r+ix)\; \mathrm{d}x\;\; \) for large n, the integral at r=ln(n) works extremely well
\( \text{fakelnx}(z) = \exp(-z) \, \sum_{n=0}^{\infty} a_n x^n\;\; \)

The integral solution is a simple entire Taylor series, though it does require twice as many terms to get good convergence. Do you have any links to the integral of integral of (1 - exp(-x) ) / x solution to the asymptotic approximation of ln(x) in the complex plane, maybe showing where the zeros are, and how to derive the a0 coefficient? I generated the Taylor series and the zeros and the complex plane graph for the fake function, which is visually the same as before. The approximation is the zeros of f(x) are approximately the zeros of \( \exp(x)\ln(x)+x^{-1}-x^{-2} \)

zeros of the asymptotic Taylor series of f(x), where \( \ln(x)\approx \exp(-x)f(x)\; \) these zeros are exactly 1 greater than the zeros of the \( \exp(x)\ln(x+1) \) asymptotic I posted on mathstack, in answering Mick's question.
Code:
zero[1]= 0.6763550778654
zero[2]= -3.014193883364 + 6.790134224598*I
zero[3]= -3.782847137525 + 13.31987455364*I
zero[4]= -4.248507475714 + 19.72207503441*I
zero[5]= -4.583409659397 + 26.07792021174*I
zero[6]= -4.844835249373 + 32.41104823228*I
zero[7]= -5.059115679636 + 38.73113851434*I
zero[8]= -5.240572105211 + 45.04296385204*I
zero[9]= -5.397864071944 + 51.34917648054*I
zero[10]= -5.536627830306 + 57.65137956884*I
zero[11]= -5.660737008441 + 63.95060483952*I
zero[12]= -5.772967940649 + 70.24754933585*I
zero[13]= -5.875378096927 + 76.54270265230*I
zero[14]= -5.969534334368 + 82.83641978994*I
zero[15]= -6.056657240617 + 89.12896507913*I
zero[16]= -6.137716050140 + 95.42053981217*I
zero[17]= -6.213493139944 + 101.7113002628*I
zero[18]= -6.284629098684 + 108.0013698029*I

Taylor series for f(x), where \( \ln(x)\approx \exp(-x)f(x)\;\; \) The error term for x=100 is 3.7E-46 An approximation for large n is \( a_n\approx \ln(n+0.5)/n! \)
notice that a0=-EulerPhi....
Code:
{fakelnx ~= exp(x)ln(x)
       -0.57721566490153286060651209008240243104215933593992
+x^ 1*  0.42278433509846713939348790991759756895784066406008
+x^ 2*  0.46139216754923356969674395495879878447892033203004
+x^ 3*  0.20935294473863341212113687387515515038186233289890
+x^ 4*  0.062754902851325019696950885135455454262132249891392
+x^ 5*  0.014217647236931670606056843693757757519093116644945
+x^ 6*  0.0026010893543034265824909554304411077346636675889723
+x^ 7*  0.00039992886467373214216990973269340087819458289819786
+x^ 8*  0.000053091306496914930469651414999373522472735560687431
+x^ 9*  0.0000062052264910348355038785718801969012819990325122033
+x^10*  0.00000064807996832746944104041450724367601885246057044432
+x^11*  0.000000061193825155719196346860601420828885238864788984523
+x^12*  0.0000000052734584045421671870651342044124190391765942791647
+x^13*  0.00000000041800375714695256408146599816261296296183472186151
+x^14*  3.0676750196048734913951264010092504902004812301510 E-11
+x^15*  2.0960977712820477707694251472447541297613548216991 E-12
+x^16*  1.3399328403787010148398795138474559812733276238735 E-13
+x^17*  8.0473377230715071910109939392797598907980150072089 E-15
+x^18*  4.5575165515318719197961986571001851250184494711409 E-16
+x^19*  2.4419594231569027457714518260362673329003457163469 E-17
+x^20*  1.2415312996950121971781158661103143683232247056530 E-18
+x^21*  6.0052582893257307543283973356372371365643437116337 E-20
+x^22*  2.7701028196591984032708574136646644636352129965898 E-21
+x^23*  1.2212106614632631494121854491216924290726114882837 E-22
+x^24*  5.1555334882259347204278024257071006128577447887905 E-24
+x^25*  2.0880011964279117817559003831596589939642935331579 E-25
+x^26*  8.1261429194621529090640377639159175389943080330102 E-27
+x^27*  3.0436962289259660631660351601039469159158981129458 E-28
+x^28*  1.0987482576059515865241269919203814411407055597183 E-29
+x^29*  3.8277869672151700119161577810252405452867105558248 E-31
+x^30*  1.2884956145011096894515623320939005339760596313537 E-32
+x^31*  4.1956673061827253837027808998413659853977660722504 E-34
+x^32*  1.3230222542910227561339742527403906609614580021133 E-35
+x^33*  4.0440563330660445648926094976778450972008364935595 E-37
+x^34*  1.1993905613003694656955658397091397527362477928820 E-38
+x^35*  3.4544804407400038762504447316858932217789985937355 E-40
+x^36*  9.6704517872301951114371135786099107617811821656656 E-42
+x^37*  2.6332719970328988715110651429505782573566576970054 E-43
+x^38*  6.9799779712718465546370325439885222772809906938190 E-45
+x^39*  1.8023083766248671765676856777913109113410290185636 E-46
+x^40*  4.5364113775403775876548026941017712014457115955210 E-48
+x^41*  1.1137328014175125933567546129869861759845314537825 E-49
+x^42*  2.6686909717828667444479935338379898294931402896110 E-51
+x^43*  6.2447513499076481310115732329654147057038279739689 E-53
+x^44*  1.4278113133454478974855760221290914072671436197014 E-54
+x^45*  3.1914910315391793365975572167819747254191359216660 E-56
+x^46*  6.9775308381625959301427270564390623481298207420352 E-58
+x^47*  1.4928078985749365678746849007271857212954266040863 E-59
+x^48*  3.1267986971785162607060674915230911476461510402713 E-61
+x^49*  6.4147723352279225531453584591845593166236564138976 E-63
+x^50*  1.2895303658788508267631349532278490303245075237949 E-64
+x^51*  2.5411320108221725479286061393374532447727295564903 E-66
+x^52*  4.9106346348668154497164547717815377655007541397561 E-68
+x^53*  9.3094850686649472206253875793277373051016813465776 E-70
+x^54*  1.7320008191374067477204080720504599283120867287661 E-71
+x^55*  3.1634128462587723403395241011643887317355583461067 E-73
+x^56*  5.6740670925058372131902540824043736094208642710853 E-75
+x^57*  9.9977930694762194846582425729533808769160304100329 E-77
+x^58*  1.7310924308536906046868980013353193814008830857469 E-78
+x^59*  2.9462764640942144757766343127462958590848324312570 E-80
+x^60*  4.9304904483845128374647134189799241414168541873582 E-82
+x^61*  8.1150684720533352796443669019602589412242975959324 E-84
+x^62*  1.3140072248285872935738443991756488960169177564096 E-85
+x^63*  2.0937318816588576190548470868569796570892351623049 E-87
+x^64*  3.2837701779251999087544223660466681359531516106385 E-89
+x^65*  5.0706074505672195579606100954869165403321429950741 E-91
+x^66*  7.7105729621622077873599101447226642146050406632429 E-93
+x^67*  1.1549241677675466249115772771205673568929741784449 E-94
+x^68*  1.7043476000648078825576088011256477299848855419037 E-96
+x^69*  2.4785382153355181142456349095181055097381201721554 E-98
+x^70*  3.5526949372480863188649463736826916909206153008007 E-100
+x^71*  5.0203563701334727144493939245675258370560353143692 E-102
+x^72*  6.9953986729220286705202294337362466359365648123984 E-104
+x^73*  9.6133828215490126811877251911240979265377813165857 E-106
+x^74*  1.3031910289910555096467725707115006055650061583240 E-107
+x^75*  1.7429624018520381177865219755515130838010329675454 E-109
+x^76*  2.3003500654527736291739536225264614802191025323224 E-111
+x^77*  2.9964128829325443326861647274649569589040207571395 E-113
+x^78*  3.8528762378249015228297200937610483334683261690396 E-115
+x^79*  4.8912078360079331167384967468993573540157848553962 E-117
+x^80*  6.1314753459808002074757652090764529053387058610005 E-119
+x^81*  7.5910188553896589198254614231271632732503148617811 E-121
+x^82*  9.2829943312081258653178716695729078376848711536329 E-123
+x^83*  1.1214866876330017067715237090532928812497782757604 E-124
+x^84*  1.3386952029851194214521788933697680384334504041334 E-126
+x^85*  1.5791117029921800906334375373586368217339140584430 E-128
+x^86*  1.8409759452832727603177383660269076889285324983831 E-130
+x^87*  2.1215176144112587986738668725960014270213332854535 E-132
+x^88*  2.4169419937195637104358582916013620975707654328002 E-134
+x^89*  2.7224715496431876894301253674263470340599943575343 E-136
+x^90*  3.0324470125206694489432915013479001153044746508472 E-138
+x^91*  3.3404873119420649838874921507225602881790904003128 E-140
+x^92*  3.6397031761971992811564498280651999197344763489193 E-142
+x^93*  3.9229547508645550771787952725148104559251830791859 E-144
+x^94*  4.1831396649157070090175388541619461666428429257111 E-146
+x^95*  4.4134949759846328751959591821066679213626482552998 E-148
+x^96*  4.6078946823078795384187751558830181891925078579770 E-150
+x^97*  4.7611242011580132149561875531380137993186225003674 E-152
+x^98*  4.8691144418474034056078619041400548932515681150974 E-154
+x^99*  4.9291207522511697725653508805406533418905894157478 E-156
+x^100*  4.9398358551324244417971863481358452571107048222407 E-158
+x^101*  4.9014305622635068674120122333226111409684612067014 E-160
+x^102*  4.8155211325091258160795833194050897338093727675539 E-162
+x^103*  4.6850671688002649218127378371739304489968451001829 E-164
+x^104*  4.5142084938123359579075295890763186904716129713617 E-166
+x^105*  4.3080531367505825217360535183633338903300009160662 E-168
+x^106*  4.0724311362863947694513557624335313440055971533802 E-170
+x^107*  3.8136301716651570767711889733776643133914935982475 E-172
+x^108*  3.5381290576077614417067048442459250083900155031310 E-174
+x^109*  3.2523439805939611579264039547479109122252672700503 E-176
+x^110*  2.9624002147876144579769585261586775945316692713051 E-178
+x^111*  2.6739392046803561352184679718064820807480901059443 E-180
+x^112*  2.3919676432155450602361487970103455401280067482068 E-182
+x^113*  2.1207518149852143866495941902003253070247670745721 E-184
+x^114*  1.8637572920905598626180594142385294758527350808493 E-186
+x^115*  1.6236312921755521351574758929345233971100160760476 E-188
+x^116*  1.4022227949130243531478224572237065780851679955563 E-190
+x^117*  1.2006339542492472844451387481895777119062205811955 E-192
+x^118*  1.0192954593311596992949250222793744936041729174470 E-194
+x^119*  8.5805824755709427503978077438919556382717974235852 E-197
+x^120*  7.1629427245159417920149376979916868329360185193739 E-199
+x^121*  5.9299976029728003335552162477071304071470577201734 E-201
+x^122*  4.8689542130529179108601436333893039884650172941733 E-203
+x^123*  3.9651928210766399286483810259082982117735703949707 E-205
+x^124*  3.2030905664713727321158672610589181806813876049716 E-207
+x^125*  2.5667217212397300315648822106421811571987742345015 E-209
+x^126*  2.0404264007560781349911735245987380472962558097928 E-211
+x^127*  1.6092486035545586520942320085514452864162396703295 E-213
+x^128*  1.2592514271899697435602527448775924274079317319014 E-215
+x^129*  9.7772223082967585412872876977583513732476706968164 E-218
+x^130*  7.5328352109993533646932234842711276820308578613847 E-220
+x^131*  5.7592667049773053671476170364135492552024172958439 E-222
+x^132*  4.3698554999374195080951614563226049467122931741762 E-224
+x^133*  3.2906610717716413190709258990566758175053194729624 E-226
+x^134*  2.4594617741662189874271612241917573435213353857392 E-228
+x^135*  1.8245767356573321026656448801202477018200673331556 E-230
+x^136*  1.3436100667523524063563669987749318384575297832572 E-232
+x^137*  9.8219337555362031364869573580655134379508177054531 E-235
+x^138*  7.1278182945815136325222971786026273733403963754591 E-237
+x^139*  5.1354085815716524121938853199439803251395270713568 E-239
+x^140*  3.6734549224507125497442055428781008845912674253196 E-241
+x^141*  2.6090235654719832264912892991013948798158716331127 E-243
+x^142*  1.8399532671270581140776349799538021351357118113416 E-245
+x^143*  1.2884949121424677972663555155591672968462550878825 E-247
+x^144*  8.9603931844223787812345937003327932427326402916726 E-250
+x^145*  6.1881508592418533674694033951819736042971603158661 E-252
+x^146*  4.2442887108141370417064037247357618435785777010216 E-254
+x^147*  2.8912097105111611665187465955360306341746829321705 E-256
+x^148*  1.9561632282659735206007572736009534912512495201248 E-258
+x^149*  1.3146232500512500291272926926979871333910761418856 E-260
+x^150*  8.7758235083878402955104350114045690559469695293915 E-263
+x^151*  5.8194799612889342564858920474312010545544567626914 E-265
+x^152*  3.8336222188009134788962161930020646378778715640423 E-267
+x^153*  2.5088930778990353514236265287817062202456540252201 E-269
+x^154*  1.6312529643907594240067116083478552278108813853025 E-271
+x^155*  1.0537684004447081243525961877266041347304763601933 E-273
+x^156*  6.7635057568716421874172523647348932906019892130952 E-276
+x^157*  4.3133956811883479261187220675703576827779880056208 E-278
+x^158*  2.7334123693605406905370622288542434746629838986581 E-280
+x^159*  1.7212616311398149056144002206786100755127055706363 E-282
+x^160*  1.0771141538966675228019040918400479164931823717467 E-284
+x^161*  6.6983326371223634990151302578139104835091618481950 E-287
+x^162*  4.1397930494355124500075559420585473619885570233969 E-289
+x^163*  2.5428110856799472932776644035817563487348596024860 E-291
+x^164*  1.5523494946229607372882237721794303607876390083032 E-293
+x^165*  9.4193526230655409821876650390764721331734535714655 E-296
+x^166*  5.6809995050505636805628297131473432838321023510375 E-298
+x^167*  3.4057785251363749414057721344272584180097698940405 E-300
+x^168*  2.0296054967957385108937453717346841044857662960594 E-302
+x^169*  1.2023360523319435034859247814567511691142685913237 E-304
+x^170*  7.0806703135278545533686492643726725218394609983669 E-307
+x^171*  4.1454550958621623720556226452389800650900708221996 E-309
+x^172*  2.4128720474849115680036967309346366621888459713960 E-311
+x^173*  1.3962890400483753341431825575480358246053819970986 E-313
+x^174*  8.0335940067477567759054919532205299550529447699042 E-316
+x^175*  4.5957069985521364266051726828601767500672513554220 E-318
+x^176*  2.6140681683142568703120687511682239274545155887225 E-320
+x^177*  1.4784875468726069538116218228362391757946913954382 E-322
+x^178*  8.3151200072071007944678346165270330343916136380611 E-325
+x^179*  4.6503239465070629188021445499950426562314368257843 E-327
+x^180*  2.5862786915905108284048963944306080560121125205261 E-329
+x^181*  1.4304026525852938468726630548211142596295257694561 E-331
+x^182*  7.8676577022524629747097889583686653376496377931391 E-334
+x^183*  4.3037785802408406906638296604361091361718535191845 E-336
+x^184*  2.3414489860678823133348493311176320865137832650839 E-338
+x^185*  1.2669592924323287203920421830205853215672773495910 E-340
+x^186*  6.8186206175744514953163000574885520190218976237096 E-343
+x^187*  3.6500506103204028921643104990781680389141538621428 E-345
+x^188*  1.9434894667063884535705818000380766542853608418192 E-347
+x^189*  1.0293397942842254074065067851027073563846635064852 E-349
+x^190*  5.4230148300022876468146230346293191867382655062593 E-352
+x^191*  2.8421064552688966476518313398510546689033076160182 E-354
+x^192*  1.4817309281894494666047881393772298706492520244929 E-356
+x^193*  7.6849247449877414125925608653957967545338470248311 E-359
+x^194*  3.9651794774173835159648552331037928402469624139567 E-361
+x^195*  2.0354039243039790833690272166674444165751050007786 E-363
+x^196*  1.0394757045530962880070911037239470086843237554893 E-365
+x^197*  5.2815985843224234803752758921066436330600823476365 E-368
+x^198*  2.6700227942410493488958853016482431036996448623282 E-370
+x^199*  1.3429943458030207405725584594926596521874467199834 E-372
+x^200*  6.7213116137825085149715573793186722713206688760142 E-375
+x^201*  3.3470746053903744311552586560088312878694623878079 E-377
+x^202*  1.6585136373739585439133749153016659687269053393912 E-379
+x^203*  8.1775962192097786204322108058019264856572696176230 E-382
+x^204*  4.0123222410717545045235843970100877329286894343075 E-384
+x^205*  1.9590248058949904349956571988029345251686068218191 E-386
+x^206*  9.5184977640603642739856883072626382446844297374139 E-389
+x^207*  4.6024756019088893793564192212106118459848833338767 E-391
+x^208*  2.2147226294058632235446217318697764691551488762423 E-393
+x^209*  1.0606253892341201581522065430476307846413972848729 E-395
+x^210*  5.0550969421430844424333870374145045770800583840711 E-398
+x^211*  2.3979030646394249727370216295767742016336274899957 E-400
+x^212*  1.1320828189038988946787590013561877660711520778326 E-402
+x^213*  5.3195991000510157368416851290242760567100197068325 E-405
+x^214*  2.4879596401822971983418651164668925455149496396735 E-407
+x^215*  1.1581931327920041631249142716319508844887213082459 E-409
+x^216*  5.3666254332802656565640333381919062213465346340587 E-412
+x^217*  2.4752185856959180831347282036253573219952179666196 E-414
+x^218*  1.1363890696273415548085250289492463027802086357917 E-416
+x^219*  5.1933897303550061745554224742662768106467625191096 E-419
+x^220*  2.3626219462779052806225318951521678039126448555731 E-421
+x^221*  1.0699561951496808241006415067985469594414531426400 E-423
+x^222*  4.8236425578994821243066917863107605438133929192477 E-426
+x^223*  2.1648630439292741080975614593290463965804796123494 E-428
+x^224*  9.6725431450581416192789539558555421892963786430846 E-431
+x^225*  4.3024371915097905757208668974816633015577173301641 E-433
+x^226*  1.9052879216561621656398613344401987823496214495958 E-435
+x^227*  8.4001573746679035778449124716808732606611186642568 E-438
+x^228*  3.6872570094985648704977951680797909957894497203775 E-440
+x^229*  1.6114504221392684884594137118750160351817597982244 E-442
+x^230*  7.0119100720617721957106120405038423548106384753730 E-445
+x^231*  3.0378743297187243375558524742738241232097309625430 E-447
+x^232*  1.3104652338243017031757180654325139966651337472505 E-449
+x^233*  5.6287443267775766402240537309351175399862604987602 E-452
+x^234*  2.4073313733304598360159891645010334840171851590154 E-454
+x^235*  1.0251950772552793102201784428383394296159959976500 E-456
+x^236*  4.3474171224897761331532808482970863786881571206480 E-459
+x^237*  1.8357692351339436357444914426216995629324045655370 E-461
+x^238*  7.7192407746565499199086461128380526538393555639660 E-464
+x^239*  3.2322764208911445458796812961993864829904379098313 E-466
+x^240*  1.3478061252451445234123311277703139930008406291885 E-468
+x^241*  5.5967890386494733419425137796797985973788425071290 E-471
+x^242*  2.3144644840218412347959549003056975779201220916514 E-473
+x^243*  9.5316833627266450690407415651456157691641681271156 E-476
+x^244*  3.9093410938357210995479814598229933177620730083544 E-478
+x^245*  1.5968337502923833582255539814058844739179290102020 E-480
+x^246*  6.4959888626146493313164924794763359263252006605482 E-483
+x^247*  2.6318883426652440822066855889720354992876377509028 E-485
+x^248*  1.0620217276239446012627798494301573548303535065070 E-487
+x^249*  4.2682531630550484444917505567585144662492849735277 E-490
+x^250*  1.7085385611848393160617658854277461821248635124533 E-492
+x^251*  6.8118363652656251948027753991754002415775642035262 E-495
+x^252*  2.7050502811535811239040535090033385918818519808521 E-497
+x^253*  1.0699538431408019936122568422083550199855939476913 E-499
+x^254*  4.2154127713594844437195248945889722850844896365904 E-502
+x^255*  1.6542733679064599588481066192040474788503056937074 E-504
+x^256*  6.4665590494423308502110289452266087827157172519750 E-507
+x^257*  2.5179358119842174254116659293815240604443023460700 E-509
+x^258*  9.7662556070494394727766519306054926515420344785254 E-512
+x^259*  3.7733759736145000551778642517874146783782732507381 E-514
+x^260*  1.4523026177529313333722579195519511137930774693499 E-516
+x^261*  5.5682104855745984229409426007813311966701316254529 E-519
+x^262*  2.1267284339528343945950921575908820902998097004283 E-521
+x^263*  8.0919397312058612220550987097844406849945341146983 E-524
+x^264*  3.0672116109857875192664498141435923879308852416462 E-526
+x^265*  1.1582213870998867575456633402684461441309859471143 E-528
+x^266*  4.3571484460888280333837731396374252888866670494807 E-531
+x^267*  1.6329850813806598272494883406392312065614717421467 E-533
+x^268*  6.0972958054378787625320080791691658306655251322734 E-536
+x^269*  2.2681593208212726029631984050449977812715623801276 E-538
+x^270*  8.4061494290655426165152693059305517289275666620224 E-541
+x^271*  3.1039440098898244203803900947201572746534649365158 E-543
+x^272*  1.1419045394458536962248930726102809083640716835070 E-545
+x^273*  4.1855327860162865784396371224702782486424421884063 E-548
+x^274*  1.5285602516184334037263418847314205520317334348544 E-550
+x^275*  5.5620006550332731345692295202713660588585446200915 E-553
+x^276*  2.0165171567224586397570147827899891650904807955472 E-555
+x^277*  7.2845198316698029992402640834068918193796532983416 E-558
+x^278*  2.6220063012451245080758394797122765315786278984426 E-560
+x^279*  9.4038556368308995397568913793379947091035625133076 E-563
+x^280*  3.3606492343665157329697229608898756515437035031841 E-565
+x^281*  1.1967156657039872496806340384815551596429394434664 E-567
+x^282*  4.2463406814885223111667505102375130743499390920123 E-570
+x^283*  1.5014132019840775339042565143810507402574337843156 E-572
+x^284*  5.2899625245005917799920451377492618316178715347366 E-575
+x^285*  1.8572797469458407989057767546916334157379318177279 E-577
+x^286*  6.4980009176000772430924985714948958044962090377158 E-580
+x^287*  2.2655061720295298733579683215468706433711662893603 E-582
+x^288*  7.8711655714334002805698052630685889213059378931640 E-585
+x^289*  2.7252503713886831916892869041842233261363727385871 E-587
+x^290*  9.4031320795565700348527537599976981415263498968553 E-590
+x^291*  3.2332747214058454654056553776814625407003183140089 E-592
+x^292*  1.1079540657533670750213709293353852119014479585542 E-594
+x^293*  3.7836859640197928030255035689763898809807362270184 E-597
+x^294*  1.2877384366771383455442173002611824335164100683808 E-599
+x^295*  4.3678177857035932803561463137741736885158507046764 E-602
+x^296*  1.4764904522846115813849812490633608203940578183013 E-604
+x^297*  4.9742890139828740800335481562783343835900102686241 E-607
+x^298*  1.6702079985532166301461419574819243928674364798095 E-609
+x^299*  5.5892582156573519333552413618290111316747972794917 E-612
+x^300*  1.8641751918061524199262751313929480833397412117845 E-614; }

Complex plane plot from -40, to +100, real, and -10 to +100 imag, grids every 10 units
   
- Sheldon


Messages In This Thread
RE: Searching for an asymptotic to exp[0.5] - by sheldonison - 09/09/2014, 06:26 PM

Possibly Related Threads…
Thread Author Replies Views Last Post
Question Tetration Asymptotic Series Catullus 18 6,758 07/05/2022, 01:29 AM
Last Post: JmsNxn
  Using a family of asymptotic tetration functions... JmsNxn 15 11,158 08/06/2021, 01:47 AM
Last Post: JmsNxn
  Reducing beta tetration to an asymptotic series, and a pull back JmsNxn 2 2,670 07/22/2021, 03:37 AM
Last Post: JmsNxn
  A Holomorphic Function Asymptotic to Tetration JmsNxn 2 3,009 03/24/2021, 09:58 PM
Last Post: JmsNxn
  An asymptotic expansion for \phi JmsNxn 1 2,395 02/08/2021, 12:25 AM
Last Post: JmsNxn
  Merged fixpoints of 2 iterates ? Asymptotic ? [2019] tommy1729 1 5,125 09/10/2019, 11:28 AM
Last Post: sheldonison
  Another asymptotic development, similar to 2sinh method JmsNxn 0 5,053 07/05/2011, 06:34 PM
Last Post: JmsNxn



Users browsing this thread: 3 Guest(s)