Thread Rating:
  • 2 Vote(s) - 4 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Searching for an asymptotic to exp[0.5]
(09/13/2014, 11:49 PM)jaydfox Wrote: ...
Treating Gamma(k) at negative non-positive integers as infinity, and the reciprocal of such as zero, we can take the limit from negative to positive infinity. And we can replace k with (k+b), where b is zero in the original solution, but can now be treated as any real...


Notice that I put "approximately equal". I haven't checked, but I assume it's exactly equal, but only in the sense that it should satisfy the functional equation exp'(x) = exp(x).

So we also have a fakeexp(z) function, and I especially like the simplicity of f'(x)=f(x) in the non-converging limit to explain why f(x)~exp(x). Here, going back to k=0.5, for simplicity.... We have to put some bounds on k, since the infinite Laurent series does not converge anywhere.




As gets arbitrarily large, the error term becomes more and more insignificant, relative to the exp(z) term, and the number of terms you can include also increases, until the starts growing in magnitude as n gets bigger negative ....
- Sheldon
Reply


Messages In This Thread
RE: Searching for an asymptotic to exp[0.5] - by sheldonison - 09/15/2014, 03:53 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Merged fixpoints of 2 iterates ? Asymptotic ? [2019] tommy1729 1 718 09/10/2019, 11:28 AM
Last Post: sheldonison
  Another asymptotic development, similar to 2sinh method JmsNxn 0 2,619 07/05/2011, 06:34 PM
Last Post: JmsNxn



Users browsing this thread: 2 Guest(s)