Negative, Fractional, and Complex Hyperoperations KingDevyn Junior Fellow  Posts: 2 Threads: 2 Joined: May 2014 05/30/2014, 06:58 AM Is there a way to continue the patterns we see within the natural numbers of current hyper-operations (Hyper-1, Hyper-2, Hyper-3, Hyper-4, ect...) or at least prove that we cannot extend the value of the operation to fractional numbers? E.g. Hyper-1/2. Negative numbers? E.g. Hyper-(-2) Or even imaginary numbers? E.g. Hyper-3i. They need not be defined, but are these operations technically there, just without practical use? Or are our names for the hyper-operations strictly for listing and naming purposes, with no way to derive meaning from such a number? Could a fractional, or negative hyper-operation represent an operator we have already defined? E.g. Hyper-(-2)= Division, or Hyper-1/2 = Division? Comments on the controversy of Zeration are also encouraged. Thanks!  MphLee Long Time Fellow    Posts: 367 Threads: 28 Joined: May 2013 05/30/2014, 07:57 AM (This post was last modified: 05/30/2014, 07:58 AM by MphLee.) -rank hyperoperations have meaning as long as we can iterate times a function defined in the set of the binary functions over the naturals numbers (or defined over a set of binary functions.) let me explain why. There are many differente Hyperoperations sequences, end they are all defined in a different way: we start with an operation and we obtain its successor operation applying a procedure (usually a recursive one). So every Hyperoperation sequence is obtained applying that recursive procedure to a base operation (aka the first step of the sequence) and so on or in a formal way That is the same as so if we can extend the iteration of from to the real-complex numbers the work is done. ---------------------- MSE MphLee Mother Law $$(\sigma+1)0=\sigma (\sigma+1)$$ S Law $$\bigcirc_f^{\lambda}\square_f^{\lambda^+}(g)=\square_g^{\lambda}\bigcirc_g^{\lambda^+}(f)$$ MphLee Long Time Fellow    Posts: 367 Threads: 28 Joined: May 2013 05/30/2014, 08:19 AM (This post was last modified: 05/30/2014, 08:22 AM by MphLee.) I'm not sure but I think that bo198214(Henrik Trappmann) had this idea in 2008 http://math.eretrandre.org/tetrationforu...l+function With his idea we can reduce the problem of real-rank hyperoperations to an iteration problem Later this idea was better developed by JmsNxn (2011) with the concept of "meta-superfunctions" http://math.eretrandre.org/tetrationforu...hp?tid=708 I'm still working on his point of view but there is a lot of work to do... MSE MphLee Mother Law $$(\sigma+1)0=\sigma (\sigma+1)$$ S Law $$\bigcirc_f^{\lambda}\square_f^{\lambda^+}(g)=\square_g^{\lambda}\bigcirc_g^{\lambda^+}(f)$$ « Next Oldest | Next Newest »

 Possibly Related Threads… Thread Author Replies Views Last Post How could we define negative hyper operators? Shanghai46 2 377 11/27/2022, 05:46 AM Last Post: JmsNxn Complex Hardy Hierarchy Catullus 3 509 11/09/2022, 05:57 PM Last Post: MphLee A relaxed zeta-extensions of the Recursive Hyperoperations MphLee 3 4,230 06/06/2022, 07:37 PM Last Post: MphLee On my old fractional calculus approach to hyper-operations JmsNxn 14 7,703 07/07/2021, 07:35 AM Last Post: JmsNxn @Andydude References about the formalization of the Hyperoperations MphLee 3 8,396 07/25/2014, 10:41 AM Last Post: MphLee Theorem in fractional calculus needed for hyperoperators JmsNxn 5 13,886 07/07/2014, 06:47 PM Last Post: MphLee Easy tutorial on hyperoperations and noptiles MikeSmith 2 6,350 06/26/2014, 11:58 PM Last Post: MikeSmith left-right iteraton in right-divisible magmas, and fractional ranks. MphLee 1 5,773 05/14/2014, 03:51 PM Last Post: MphLee A new way of approaching fractional hyper operators JmsNxn 0 5,973 05/26/2012, 06:34 PM Last Post: JmsNxn generalizing the problem of fractional analytic Ackermann functions JmsNxn 17 42,137 11/24/2011, 01:18 AM Last Post: JmsNxn

Users browsing this thread: 1 Guest(s) 