Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
[2014] A note on abs
#1
I noticed that for 0<a<1

|exp>(z)| > |exp^[a](z)| > |z| when |exp(z)| > |z|

and

|exp>(z)| < |exp^[a](z)| < |z| when |exp(z)| < |z|

never holds for all z.

This complicated many proof attempts of me in the past.
In particular sheldon's recent conjecture that Knesersexp(a + bi) for a>~ 0.5 reaches its max absolute value at Knesersexp(a).

See : http://math.eretrandre.org/tetrationforu...hp?tid=882
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
  [2014] Beyond Gamma and Barnes-G tommy1729 1 2,396 12/28/2014, 05:48 PM
Last Post: MphLee
  [2014] Representations by 2sinh^[0.5] tommy1729 1 2,406 11/16/2014, 07:40 PM
Last Post: tommy1729
  [2014] Uniqueness of periodic superfunction tommy1729 0 1,996 11/09/2014, 10:20 PM
Last Post: tommy1729
  [2014] The angle fractal. tommy1729 1 2,280 10/19/2014, 03:15 PM
Last Post: tommy1729
  [2014] " statistical dynamics " tommy1729 0 1,757 08/31/2014, 11:53 PM
Last Post: tommy1729
  [2014] exp^[s](z) = z tommy1729 0 1,599 08/26/2014, 07:45 PM
Last Post: tommy1729
  [2014] composition of 3 functions. tommy1729 0 1,805 08/25/2014, 12:08 AM
Last Post: tommy1729
  [2014] combining some recent ideas. tommy1729 0 1,700 08/19/2014, 12:25 PM
Last Post: tommy1729
  [2014] Inconsistant equation ? tommy1729 0 1,824 07/27/2014, 02:38 PM
Last Post: tommy1729
  [2014] f(z) = f(exp(z)) = f(exp^[m](z)) tommy1729 0 1,434 07/23/2014, 11:20 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)