• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 [2014] A note on abs tommy1729 Ultimate Fellow Posts: 1,370 Threads: 335 Joined: Feb 2009 06/15/2014, 08:31 PM I noticed that for 0(z)| > |exp^[a](z)| > |z| when |exp(z)| > |z| and |exp>(z)| < |exp^[a](z)| < |z| when |exp(z)| < |z| never holds for all z. This complicated many proof attempts of me in the past. In particular sheldon's recent conjecture that Knesersexp(a + bi) for a>~ 0.5 reaches its max absolute value at Knesersexp(a). See : http://math.eretrandre.org/tetrationforu...hp?tid=882 « Next Oldest | Next Newest »

 Possibly Related Threads... Thread Author Replies Views Last Post [2014] Beyond Gamma and Barnes-G tommy1729 1 2,470 12/28/2014, 05:48 PM Last Post: MphLee [2014] Representations by 2sinh^[0.5] tommy1729 1 2,471 11/16/2014, 07:40 PM Last Post: tommy1729 [2014] Uniqueness of periodic superfunction tommy1729 0 2,050 11/09/2014, 10:20 PM Last Post: tommy1729 [2014] The angle fractal. tommy1729 1 2,347 10/19/2014, 03:15 PM Last Post: tommy1729 [2014] " statistical dynamics " tommy1729 0 1,812 08/31/2014, 11:53 PM Last Post: tommy1729 [2014] exp^[s](z) = z tommy1729 0 1,644 08/26/2014, 07:45 PM Last Post: tommy1729 [2014] composition of 3 functions. tommy1729 0 1,859 08/25/2014, 12:08 AM Last Post: tommy1729 [2014] combining some recent ideas. tommy1729 0 1,742 08/19/2014, 12:25 PM Last Post: tommy1729 [2014] Inconsistant equation ? tommy1729 0 1,879 07/27/2014, 02:38 PM Last Post: tommy1729 [2014] f(z) = f(exp(z)) = f(exp^[m](z)) tommy1729 0 1,478 07/23/2014, 11:20 PM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)