Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Regular slog for base sqrt(2) - Using z=2
#9
Two comments.

@Henryk
The infinitely iterated exponential with branch indecies is probably the best way:
with the value substituted for x as in . Using the Lambert W function branches, this gives and which are exactly those that you would expect.

@Jay
Why is it 18-periodic? I understand it would be periodic in the imaginary direction just like base-e, but why 18?

Andrew Robbins
Reply


Messages In This Thread
RE: Regular slog for base sqrt(2) - Using z=2 - by andydude - 11/25/2007, 01:15 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Inspired by the sqrt tommy1729 0 1,624 02/13/2017, 01:11 AM
Last Post: tommy1729
  Some slog stuff tommy1729 15 13,916 05/14/2015, 09:25 PM
Last Post: tommy1729
  tetration base sqrt(e) tommy1729 2 3,668 02/14/2015, 12:36 AM
Last Post: tommy1729
  Regular iteration using matrix-Jordan-form Gottfried 7 9,320 09/29/2014, 11:39 PM
Last Post: Gottfried
  A limit exercise with Ei and slog. tommy1729 0 2,100 09/09/2014, 08:00 PM
Last Post: tommy1729
  A system of functional equations for slog(x) ? tommy1729 3 4,859 07/28/2014, 09:16 PM
Last Post: tommy1729
  [2014] sqrt boundary tommy1729 0 1,917 06/19/2014, 08:03 PM
Last Post: tommy1729
  slog(superfactorial(x)) = ? tommy1729 3 5,358 06/02/2014, 11:29 PM
Last Post: tommy1729
  [stuck] On the functional equation of the slog : slog(e^z) = slog(z)+1 tommy1729 1 2,709 04/28/2014, 09:23 PM
Last Post: tommy1729
  A simple yet unsolved equation for slog(z) ? tommy1729 0 2,033 04/27/2014, 08:02 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)