Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
[2014] Beyond Gamma and Barnes-G
#1
Most of you here are familiar with the Gamma function , Barnes-G function , the K-function , the double gamma function etc.

But in the spirit of my generalized distributive law / commutative assosiative hyperoperators I was wondering about

f(z+1) = f(z)^ln(z)

It makes sense afterall :

f1(z+1) = z + f1(z) leads to the triangular numbers.

f2(z+1) = z f2(z) leads to the gamma function.

f3(z+1) = f3(z)^ln(z)

Notice f_n(z) = exp^[n]( ln^[n]f_n(z) + ln^[n](z) )

So is there an integral representation for f3 ?

How does it look like ?

Analogues of Bohr-Mullerup etc ?

Hence the connection to the hyperoperators.


regards

tommy1729
Reply


Messages In This Thread
[2014] Beyond Gamma and Barnes-G - by tommy1729 - 12/28/2014, 05:04 PM
RE: [2014] Beyond Gamma and Barnes-G - by MphLee - 12/28/2014, 05:48 PM

Possibly Related Threads…
Thread Author Replies Views Last Post
  A related discussion on interpolation: factorial and gamma-function Gottfried 9 17,728 07/10/2022, 06:23 AM
Last Post: Gottfried
  [Exercise] A deal of Uniqueness-critrion:Gamma-functionas iteration Gottfried 6 7,116 03/19/2021, 01:25 PM
Last Post: tommy1729
  Tommy's Gamma trick ? tommy1729 7 13,748 11/07/2015, 01:02 PM
Last Post: tommy1729
  [2014] Representations by 2sinh^[0.5] tommy1729 1 4,685 11/16/2014, 07:40 PM
Last Post: tommy1729
  [2014] Uniqueness of periodic superfunction tommy1729 0 3,864 11/09/2014, 10:20 PM
Last Post: tommy1729
  [2014] The angle fractal. tommy1729 1 4,607 10/19/2014, 03:15 PM
Last Post: tommy1729
  [2014] " statistical dynamics " tommy1729 0 3,363 08/31/2014, 11:53 PM
Last Post: tommy1729
  [2014] exp^[s](z) = z tommy1729 0 3,124 08/26/2014, 07:45 PM
Last Post: tommy1729
  [2014] composition of 3 functions. tommy1729 0 3,530 08/25/2014, 12:08 AM
Last Post: tommy1729
  [2014] combining some recent ideas. tommy1729 0 3,258 08/19/2014, 12:25 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)