## On the ultimate energy bound of solutions to some forced second order evolution equations with a general nonlinear damping operator

Under suitable growth and coercivity conditions on the nonlinear damping operator $g$ which ensure non-resonance, we estimate the ultimate bound of the energy of the general solution to the equation $\ddot{u}(t) + Au(t) + g(\dot{u}(t))=h(t),\quad t\in\mathbb{R}^+ ,$ where $A$ is a positive selfadjoint operator on a Hilbert space $H$ and $h$ is a bounded forcing term with values in $H$. In general the bound is of the form $ C(1+ ||h||^4)$ where $||h||$ stands for the $L^\infty$ norm of $h$ with values in $H$ and the growth of $g$ does not seem to play any role... If $g$ behaves lie a power for large values of the velocity, the ultimate bound has a quadratic growth with respect to $||h||$ and this result is optimal. If $h$ is anti periodic, we obtain a much lower growth bound and again the result is shown to be optimal even for scalar ODEs. read more

PDF Abstract