Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Conjecture on semi-exp base change [2015]
#1
Let x,y > 0.
Let B>b>2.

Expb is exp base b and expB is exp base B.
Analogue for ln.
Conjecture :

A(x,y) = expB^[1/2](lnB^[1/2](x) + lnB^[1/2](y))
B(x,y) = expb^[1/2](lnb^[1/2](x) + lnb^[1/2](y))
C(x,y) = (2+x^2+y^2)^(B-b)

A(x,y)/( B(x,y) ln(2+C(x,y)) ) < 2

Regards

Tommy1729
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
  Semi-exp and the geometric derivative. A criterion. tommy1729 0 1,126 09/19/2017, 09:45 PM
Last Post: tommy1729
  @Gottfried : answer to your conjecture on MSE. tommy1729 2 2,277 02/05/2017, 09:38 PM
Last Post: Gottfried
  Polygon cyclic fixpoint conjecture tommy1729 1 1,967 05/18/2016, 12:26 PM
Last Post: tommy1729
  2015 Continuum sum conjecture tommy1729 3 3,077 05/26/2015, 12:24 PM
Last Post: tommy1729
  [2015] Spiderweb theory tommy1729 0 1,666 03/29/2015, 06:25 PM
Last Post: tommy1729
  [2015] 4th Zeration from base change pentation tommy1729 5 5,255 03/29/2015, 05:47 PM
Last Post: tommy1729
  [2015] s(exp(d(x))) = x + 2 tommy1729 1 1,962 03/26/2015, 05:35 PM
Last Post: tommy1729
  [2015] New zeration and matrix log ? tommy1729 1 2,883 03/24/2015, 07:07 AM
Last Post: marraco
  2 fixpoint pairs [2015] tommy1729 0 1,616 02/18/2015, 11:29 PM
Last Post: tommy1729
  Tommy's conjecture : every positive integer is the sum of at most 8 pentatope numbers tommy1729 0 1,967 08/17/2014, 09:01 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)