Conjecture on semi-exp base change [2015] tommy1729 Ultimate Fellow Posts: 1,703 Threads: 374 Joined: Feb 2009 03/24/2015, 03:14 PM (This post was last modified: 03/24/2015, 04:17 PM by tommy1729.) Let x,y > 0. Let B>b>2. Expb is exp base b and expB is exp base B. Analogue for ln. Conjecture : A(x,y) = expB^[1/2](lnB^[1/2](x) + lnB^[1/2](y)) B(x,y) = expb^[1/2](lnb^[1/2](x) + lnb^[1/2](y)) C(x,y) = (2+x^2+y^2)^(B-b) A(x,y)/( B(x,y) ln(2+C(x,y)) ) < 2 Regards Tommy1729 « Next Oldest | Next Newest »

 Possibly Related Threads… Thread Author Replies Views Last Post tommy's group addition isomo conjecture tommy1729 1 192 09/16/2022, 12:25 PM Last Post: tommy1729 [NT] primitive root conjecture tommy1729 0 175 09/02/2022, 12:32 PM Last Post: tommy1729 semi-group homomorphism and tommy's U-tetration tommy1729 5 380 08/12/2022, 08:14 PM Last Post: tommy1729 Base -1 marraco 15 18,824 07/06/2022, 09:37 AM Last Post: Catullus tommy's new conjecture/theorem/idea (2022) ?? tommy1729 0 245 06/22/2022, 11:49 PM Last Post: tommy1729 conjecture 666 : exp^[x](0+si) tommy1729 2 1,428 05/17/2021, 11:17 PM Last Post: tommy1729 A different approach to the base-change method JmsNxn 0 1,250 03/17/2021, 11:15 PM Last Post: JmsNxn Semi-exp and the geometric derivative. A criterion. tommy1729 0 3,418 09/19/2017, 09:45 PM Last Post: tommy1729 @Gottfried : answer to your conjecture on MSE. tommy1729 2 6,612 02/05/2017, 09:38 PM Last Post: Gottfried Base units Xorter 0 3,223 01/22/2017, 10:29 PM Last Post: Xorter

Users browsing this thread: 1 Guest(s)