Conjecture on semi-exp base change [2015]
#1
Let x,y > 0.
Let B>b>2.

Expb is exp base b and expB is exp base B.
Analogue for ln.
Conjecture :

A(x,y) = expB^[1/2](lnB^[1/2](x) + lnB^[1/2](y))
B(x,y) = expb^[1/2](lnb^[1/2](x) + lnb^[1/2](y))
C(x,y) = (2+x^2+y^2)^(B-b)

A(x,y)/( B(x,y) ln(2+C(x,y)) ) < 2

Regards

Tommy1729
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  tommy's group addition isomo conjecture tommy1729 1 192 09/16/2022, 12:25 PM
Last Post: tommy1729
  [NT] primitive root conjecture tommy1729 0 175 09/02/2022, 12:32 PM
Last Post: tommy1729
  semi-group homomorphism and tommy's U-tetration tommy1729 5 380 08/12/2022, 08:14 PM
Last Post: tommy1729
  Base -1 marraco 15 18,824 07/06/2022, 09:37 AM
Last Post: Catullus
  tommy's new conjecture/theorem/idea (2022) ?? tommy1729 0 245 06/22/2022, 11:49 PM
Last Post: tommy1729
  conjecture 666 : exp^[x](0+si) tommy1729 2 1,428 05/17/2021, 11:17 PM
Last Post: tommy1729
  A different approach to the base-change method JmsNxn 0 1,250 03/17/2021, 11:15 PM
Last Post: JmsNxn
  Semi-exp and the geometric derivative. A criterion. tommy1729 0 3,418 09/19/2017, 09:45 PM
Last Post: tommy1729
  @Gottfried : answer to your conjecture on MSE. tommy1729 2 6,612 02/05/2017, 09:38 PM
Last Post: Gottfried
  Base units Xorter 0 3,223 01/22/2017, 10:29 PM
Last Post: Xorter



Users browsing this thread: 1 Guest(s)