Conjecture on semi-exp base change [2015]
#1
Let x,y > 0.
Let B>b>2.

Expb is exp base b and expB is exp base B.
Analogue for ln.
Conjecture :

A(x,y) = expB^[1/2](lnB^[1/2](x) + lnB^[1/2](y))
B(x,y) = expb^[1/2](lnb^[1/2](x) + lnb^[1/2](y))
C(x,y) = (2+x^2+y^2)^(B-b)

A(x,y)/( B(x,y) ln(2+C(x,y)) ) < 2

Regards

Tommy1729
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  bounded derivatives and semi-group iso ( repost ?? ) tommy1729 3 100 02/23/2023, 12:12 AM
Last Post: tommy1729
  Semi-group iso , tommy's limit fix method and alternative limit for 2sinh method tommy1729 1 235 12/30/2022, 11:27 PM
Last Post: tommy1729
  The semi-group iso problem and bounded derivatives tommy1729 3 382 12/07/2022, 09:26 PM
Last Post: tommy1729
  tommy's group addition isomo conjecture tommy1729 1 366 09/16/2022, 12:25 PM
Last Post: tommy1729
  [NT] primitive root conjecture tommy1729 0 312 09/02/2022, 12:32 PM
Last Post: tommy1729
  semi-group homomorphism and tommy's U-tetration tommy1729 5 685 08/12/2022, 08:14 PM
Last Post: tommy1729
  Base -1 marraco 15 19,977 07/06/2022, 09:37 AM
Last Post: Catullus
  tommy's new conjecture/theorem/idea (2022) ?? tommy1729 0 372 06/22/2022, 11:49 PM
Last Post: tommy1729
  I thought I'd take a crack at base = 1/2 JmsNxn 9 2,814 06/20/2022, 08:28 AM
Last Post: Catullus
  On the [tex]2 \pi i[/tex]-periodic solution to tetration, base e JmsNxn 0 948 09/28/2021, 05:44 AM
Last Post: JmsNxn



Users browsing this thread: 1 Guest(s)