Thread Rating:
  • 1 Vote(s) - 2 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Tommy-Mandelbrot function
#1
Sad 
Let a(x) = x^2 +1
Let b(x) be the functional inverse of a(x).
Let c(x) = x^2 +1 - exp(-2x).

D(x) = b^[n]( c^[1/2] (a^[n](x)) )
Where n Goes to infinity.

D(x) is the Tommy-Mandelbrot function.

Conjecture :

D(z) is analytic for Re(z) > 0 and z no element of the mandelbrot set from a(x).

Regards

Tommy1729
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
  Is there a function space for tetration? Chenjesu 0 83 06/23/2019, 08:24 PM
Last Post: Chenjesu
  Degamma function Xorter 0 589 10/22/2018, 11:29 AM
Last Post: Xorter
  tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 2,079 01/17/2017, 07:21 AM
Last Post: sheldonison
  Tommy's matrix method for superlogarithm. tommy1729 0 1,398 05/07/2016, 12:28 PM
Last Post: tommy1729
  Should tetration be a multivalued function? marraco 17 14,175 01/14/2016, 04:24 AM
Last Post: marraco
  Introducing new special function : Lambert_t(z,r) tommy1729 2 3,075 01/10/2016, 06:14 PM
Last Post: tommy1729
  Dangerous limits ... Tommy's limit paradox tommy1729 0 1,643 11/27/2015, 12:36 AM
Last Post: tommy1729
  Tommy's Gamma trick ? tommy1729 7 5,318 11/07/2015, 01:02 PM
Last Post: tommy1729
  Tommy triangles tommy1729 1 1,761 11/04/2015, 01:17 PM
Last Post: tommy1729
  Tommy-Gottfried divisions. tommy1729 0 1,423 10/09/2015, 07:39 AM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)