• 1 Vote(s) - 2 Average
• 1
• 2
• 3
• 4
• 5
 Tommy-Mandelbrot function tommy1729 Ultimate Fellow Posts: 1,614 Threads: 364 Joined: Feb 2009   04/21/2015, 01:02 PM Let a(x) = x^2 +1 Let b(x) be the functional inverse of a(x). Let c(x) = x^2 +1 - exp(-2x). D(x) = b^[n]( c^[1/2] (a^[n](x)) ) Where n Goes to infinity. D(x) is the Tommy-Mandelbrot function. Conjecture : D(z) is analytic for Re(z) > 0 and z no element of the mandelbrot set from a(x). Regards Tommy1729 « Next Oldest | Next Newest »

 Possibly Related Threads… Thread Author Replies Views Last Post Tommy's Gaussian method. tommy1729 34 8,562 06/28/2022, 02:23 PM Last Post: tommy1729 " tommy quaternion " tommy1729 25 7,541 06/25/2022, 10:02 PM Last Post: tommy1729 tommy's new conjecture/theorem/idea (2022) ?? tommy1729 0 52 06/22/2022, 11:49 PM Last Post: tommy1729 tommy beta method tommy1729 0 521 12/09/2021, 11:48 PM Last Post: tommy1729 tommy's singularity theorem and connection to kneser and gaussian method tommy1729 2 1,098 09/20/2021, 04:29 AM Last Post: JmsNxn A Holomorphic Function Asymptotic to Tetration JmsNxn 2 1,678 03/24/2021, 09:58 PM Last Post: JmsNxn New mathematical object - hyperanalytic function arybnikov 4 7,286 01/02/2020, 01:38 AM Last Post: arybnikov Is there a function space for tetration? Chenjesu 0 2,519 06/23/2019, 08:24 PM Last Post: Chenjesu Degamma function Xorter 0 2,975 10/22/2018, 11:29 AM Last Post: Xorter tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 5,543 01/17/2017, 07:21 AM Last Post: sheldonison

Users browsing this thread: 1 Guest(s)