Thread Rating:
  • 1 Vote(s) - 2 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Tommy-Mandelbrot function
#1
Sad 
Let a(x) = x^2 +1
Let b(x) be the functional inverse of a(x).
Let c(x) = x^2 +1 - exp(-2x).

D(x) = b^[n]( c^[1/2] (a^[n](x)) )
Where n Goes to infinity.

D(x) is the Tommy-Mandelbrot function.

Conjecture :

D(z) is analytic for Re(z) > 0 and z no element of the mandelbrot set from a(x).

Regards

Tommy1729
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  Fibonacci as iteration of fractional linear function bo198214 42 455 08/12/2022, 11:57 PM
Last Post: bo198214
  semi-group homomorphism and tommy's U-tetration tommy1729 5 61 08/12/2022, 08:14 PM
Last Post: tommy1729
  Constructing an analytic repelling Abel function JmsNxn 0 104 07/11/2022, 10:30 PM
Last Post: JmsNxn
  A related discussion on interpolation: factorial and gamma-function Gottfried 9 17,726 07/10/2022, 06:23 AM
Last Post: Gottfried
  " tommy quaternion " tommy1729 30 8,233 07/04/2022, 10:58 PM
Last Post: Catullus
  Tommy's Gaussian method. tommy1729 34 9,241 06/28/2022, 02:23 PM
Last Post: tommy1729
  tommy's new conjecture/theorem/idea (2022) ?? tommy1729 0 120 06/22/2022, 11:49 PM
Last Post: tommy1729
  tommy beta method tommy1729 0 599 12/09/2021, 11:48 PM
Last Post: tommy1729
  tommy's singularity theorem and connection to kneser and gaussian method tommy1729 2 1,250 09/20/2021, 04:29 AM
Last Post: JmsNxn
  A Holomorphic Function Asymptotic to Tetration JmsNxn 2 1,800 03/24/2021, 09:58 PM
Last Post: JmsNxn



Users browsing this thread: 1 Guest(s)