• 1 Vote(s) - 2 Average
• 1
• 2
• 3
• 4
• 5
 Tommy-Mandelbrot function tommy1729 Ultimate Fellow Posts: 1,668 Threads: 368 Joined: Feb 2009   04/21/2015, 01:02 PM Let a(x) = x^2 +1 Let b(x) be the functional inverse of a(x). Let c(x) = x^2 +1 - exp(-2x). D(x) = b^[n]( c^[1/2] (a^[n](x)) ) Where n Goes to infinity. D(x) is the Tommy-Mandelbrot function. Conjecture : D(z) is analytic for Re(z) > 0 and z no element of the mandelbrot set from a(x). Regards Tommy1729 « Next Oldest | Next Newest »

 Possibly Related Threads… Thread Author Replies Views Last Post Fibonacci as iteration of fractional linear function bo198214 42 455 08/12/2022, 11:57 PM Last Post: bo198214 semi-group homomorphism and tommy's U-tetration tommy1729 5 61 08/12/2022, 08:14 PM Last Post: tommy1729 Constructing an analytic repelling Abel function JmsNxn 0 104 07/11/2022, 10:30 PM Last Post: JmsNxn A related discussion on interpolation: factorial and gamma-function Gottfried 9 17,726 07/10/2022, 06:23 AM Last Post: Gottfried " tommy quaternion " tommy1729 30 8,233 07/04/2022, 10:58 PM Last Post: Catullus Tommy's Gaussian method. tommy1729 34 9,241 06/28/2022, 02:23 PM Last Post: tommy1729 tommy's new conjecture/theorem/idea (2022) ?? tommy1729 0 120 06/22/2022, 11:49 PM Last Post: tommy1729 tommy beta method tommy1729 0 599 12/09/2021, 11:48 PM Last Post: tommy1729 tommy's singularity theorem and connection to kneser and gaussian method tommy1729 2 1,250 09/20/2021, 04:29 AM Last Post: JmsNxn A Holomorphic Function Asymptotic to Tetration JmsNxn 2 1,800 03/24/2021, 09:58 PM Last Post: JmsNxn

Users browsing this thread: 1 Guest(s)