Thread Rating:
  • 1 Vote(s) - 2 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Tommy-Mandelbrot function
#1
Sad 
Let a(x) = x^2 +1
Let b(x) be the functional inverse of a(x).
Let c(x) = x^2 +1 - exp(-2x).

D(x) = b^[n]( c^[1/2] (a^[n](x)) )
Where n Goes to infinity.

D(x) is the Tommy-Mandelbrot function.

Conjecture :

D(z) is analytic for Re(z) > 0 and z no element of the mandelbrot set from a(x).

Regards

Tommy1729
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
  Tommy's Gaussian method. tommy1729 24 3,691 11/11/2021, 12:58 AM
Last Post: JmsNxn
  tommy's singularity theorem and connection to kneser and gaussian method tommy1729 2 448 09/20/2021, 04:29 AM
Last Post: JmsNxn
  " tommy quaternion " tommy1729 14 5,148 09/16/2021, 11:34 PM
Last Post: tommy1729
  A Holomorphic Function Asymptotic to Tetration JmsNxn 2 1,101 03/24/2021, 09:58 PM
Last Post: JmsNxn
  New mathematical object - hyperanalytic function arybnikov 4 6,132 01/02/2020, 01:38 AM
Last Post: arybnikov
  Is there a function space for tetration? Chenjesu 0 2,182 06/23/2019, 08:24 PM
Last Post: Chenjesu
  Degamma function Xorter 0 2,597 10/22/2018, 11:29 AM
Last Post: Xorter
  tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 5,034 01/17/2017, 07:21 AM
Last Post: sheldonison
  Tommy's matrix method for superlogarithm. tommy1729 0 3,343 05/07/2016, 12:28 PM
Last Post: tommy1729
  Should tetration be a multivalued function? marraco 17 31,536 01/14/2016, 04:24 AM
Last Post: marraco



Users browsing this thread: 1 Guest(s)